Case Report

Clinical Course

Five days after being discharged following unilateral inguinal hernia repair, an 11-week-old male was reported by his mother to have some reddening at the herniorrhaphy site with minimal clear brownish drainage and a fever of 100.7°F. After a couple of telephone conversations with the surgeon over a period of several hours, she was instructed to bring the child to the Emergency Department where the infant was found to be normally feeding and voiding. Initial vital signs were temperature, 99.5°F; pulse rate, 185/min; respiratory rate, 32/min; and oxygen saturation, 99%. Cultures of the blood and the wound were obtained; these were negative for any growth at 5 days. Upon consultation with the on-call surgeon, who suspected superficial wound infection, the patient was administered 100 mg of Ancef® (GlaxoSmithKline, Research Triangle Park, NC) with a syringe pump through a T-connector attached to a 24-gauge angiocatheter in the vein on the dorsum of the right hand. He was admitted to the hospital so that the surgical site could be evaluated by his surgeon the next morning. When a venous infusion of maintenance fluids was started, the patient immediately went into cardio-respiratory arrest and was pronounced dead after resuscitation efforts failed. Subsequently, air collections were found in both venous and arterial circulations, including the splenoportal system. Detailed review of the clinical presentation and course, laboratory results, radiological, and pathological findings, along with a review of pertinent literature provides an explanation for the death by air embolism. Apparent inconsistent findings both radiographically and at autopsy are resolved. The mechanism of distribution of air to both systemic and splenoportal circulation is discussed. We believe this to be only the eighth case reported in English-language literature of infantile death from peripheral venous infusion. In all age groups, we find only six other cases in the English-language literature of gas found concomitantly in both the systemic and portal venous systems.

KEYWORDS: forensic science, air embolism, infantile death from peripheral air, embolism, splenoportal air

Infant Death Due to Air Embolism from Peripheral Venous Infusion

Matthew W. Sowell,1 J.D.; Cari L. Lovelady,2 M.D.; B.G. Brogdon,2 M.D.; and Cyril H. Wecht,3 M.D., J.D.

ABSTRACT: An otherwise healthy male infant was brought to the hospital because the mother suspected superficial infection at the operative site 5 days after an inguinal hernia repair. He was admitted to the pediatric unit overnight to be evaluated by his surgeon the next morning. When a venous infusion of maintenance fluids was started, the patient immediately went into cardio-respiratory arrest and was pronounced dead after resuscitation efforts failed. Subsequently, air collections were found in both venous and arterial circulations, including the splenoportal system. Detailed review of the clinical presentation and course, laboratory results, radiological, and pathological findings, along with a review of pertinent literature provides an explanation for the death by air embolism. Apparent inconsistent findings both radiographically and at autopsy are resolved. The mechanism of distribution of air to both systemic and splenoportal circulation is discussed. We believe this to be only the eighth case reported in English-language literature of infantile death from peripheral venous infusion. In all age groups, we find only six other cases in the English-language literature of gas found concomitantly in both the systemic and portal venous systems.

Case Report

Clinical Course

Five days after being discharged following unilateral inguinal hernia repair, an 11-week-old male was reported by his mother to have some reddening at the herniorrhaphy site with minimal clear brownish drainage and a fever of 100.7°F. After a couple of telephone conversations with the surgeon over a period of several hours, she was instructed to bring the child to the Emergency Department where the infant was found to be normally feeding and voiding. Initial vital signs were temperature, 99.5°F; pulse rate, 185/min; respiratory rate, 32/min; and oxygen saturation, 99%. Cultures of the blood and the wound were obtained; these were negative for any growth at 5 days. Upon consultation with the on-call surgeon, who suspected superficial wound infection, the patient was administered 100 mg of Ancef® (GlaxoSmithKline, Research Triangle Park, NC) with a syringe pump through a T-connector attached to a 24-gauge angiocatheter in the vein on the dorsum of the right hand. He was admitted to the hospital so that the surgical site could be evaluated by his surgeon the next morning.

Shortly after midnight, the patient was assigned and taken to a room in the pediatric unit. An admission physical was performed, which revealed temperature, 99.1°F; pulse rate, 145; respiratory rate, 40; blood pressure 89/47; and weight 4.45 kg. Maintenance fluids had been ordered by the admitting physician. Consequently, before entering the infant’s room, the admitting nurse set up a Baxter Colleague infusion pump with a 1000 cm³ premixed bag of D51/2 NS+20 mEq K+ (Baxter), a three-port Baxter interlink infusion tubing, and a Braun Safeline Clip Lock cannula. No air-eliminating filters were used. The infant was alert, awake, and being held head-high in his mother’s lap. The mother was seated in a chair at the foot of the crib. The bag was hung at the head of the crib. The infant began crying as the nurse flushed the T-connector with normal saline. Immediately thereafter, the nurse started the infusion pump and returned to the head of the crib to record the time. Meanwhile, the baby’s cries had turned into screams; he then coughed or gasped loudly; his back arched and his arms stiffened. He lost consciousness. The nurse returned immediately to him, suspected cardio-respiratory arrest, and pushed the code-alarm button. Resuscitation efforts began with chest compressions and several minutes of ventilation by means of an AMBU bag and mask. Subsequently, endotracheal and orogastric tubes were introduced, and manual ventilation was continued. The infant’s status did not improve. The Pediatric Advanced Life Support (PALS) resuscitation protocol was followed, which included chest compressions, and intravenous epinephrine, calcium chloride, atropine, and amiodarone were administered through the Angiocath connector (distal to the IV tubing). Defibrillation was performed on four occasions. A portable chest X-ray examination was performed to determine endotracheal tube placement (Fig. 1). There was no improvement in the infant’s status, and after 59 min of resuscitation he was declared dead. At the conclusion of the resuscitation, the surgeon who had performed the hernia repair arrived, examined the surgical site, and opined that it appeared to be healing normally and did not appear infected. The Risk Management Director (RMD) was contacted immediately upon the infant’s arrest. The RMD came to the hospital and sequestered the bag, tubing, and alligator clip. However, inspection of this setup revealed bubbles in the tubing according to
to subsequent testimony of the RMD. Subsequently, the IV setup was never made available to the medical examiner for testing of the safety alarm or to determine the length of the tubing and its volume capacity.

Within 3 h of death, the body was removed from the hospital floor to a refrigerated morgue. Except for a brief interval for postmortem radiologic examinations in the hospital’s radiology department, the body remained refrigerated until autopsy.

Past Medical History

The infant was premature (33 weeks, 5 days gestational age). He was reported to have a right inguinal hernia and a systolic murmur. The newborn period was uneventful and the patient thrived. A preoperative cardiology evaluation was obtained 3 weeks before the patient’s death and was entirely normal for an infant of this age, revealing an innocent murmur of normal pulmonary artery turbulence and a 2.19 mm closing patent foramen ovale as measured by transthoracic echocardiogram. The preoperative chest radiograph was normal.

Laboratory Findings

Hematology studies drawn in the Emergency Department were consistent with expectations for a 5-day postoperative patient, including a white blood cell count of 18,000/µL. Along with the collection of blood for determination of blood gases and chemistries during resuscitation, a blood culture was taken, which showed no growth at 5 days.

Radiological Findings

The supine frontal view of the chest obtained during the resuscitative efforts (Fig. 1) was of poor technical quality, being underexposed, and the endotracheal tube is not visible below the second thoracic vertebral level. The spinal elements are barely apparent through the heart and mediastinal structures. No air is seen in vascular structures or the heart. A minimal amount of left upper quadrant gas is seen, probably representing the splenic flexure.

The post-mortem radiographs taken 12 h after death (Fig. 2) show air in the pulmonary and systemic circulation as well as air in the portal venous system beneath the diaphragm. There are other poorly defined mottled shadows over the heart that are further elucidated by the subsequent computed tomography (CT).
examination. A considerable amount of gas is present in the stomach and bowel.

CT of the chest was performed without contrast (Fig. 3). Axial sections enabled visualization of air in the right carotid artery, subclavian veins, left vertebral artery, the ascending aorta, and, probably, the origin of a left coronary artery. Bubbly air collections are seen in right and left ventricles. More peripheral collections at the margin of the heart shadow may represent either coronary vessels or epicardial veins. Axial views of the chest continued below the diaphragm demonstrate, again, air in the portal venous system, the stomach, and large and small bowel loops.

A CT of the brain (Fig. 4) revealed air in the left vertebral artery, bilateral carotid arteries and cavernous sinuses, venous sinuses, and probable subarachnoid air.

Additional chest radiographs taken at the Medical Examiners’ office were of extremely poor quality, being poorly exposed, improperly processed, and marred by many handling artifacts. One could barely make out small collections of intravascular air greatly reduced in amount from earlier post-mortem studies.

It is important to note that on none of the radiological examinations was air or other gas found to be present in solid organs or superficial soft tissues.

Pathological Findings

Autopsy was performed by the Medical Examiner’s office approximately 31 h after the infant’s death. The examiner was not told of, or furnished, the venous access setup. Small amounts of blood-tinged fluid were present in the pleural cavities and pericardial sac, all felt to be attributable to the rigorous resuscitation efforts. A small amount of yellow–gray exudate and 21 cm³ of fluid were present in the peritoneal cavity, believed to be attributable to the herniorrhaphy. Microscopic examination revealed no histopathological process. Drug screens were within normal limits. The foramen ovale was not probed, nor was the examination of the heart or major vessels performed under water. The cause of death was stated to be air embolism due to air introduced via the venous system.

Discussion

The distribution of intravascular gas in this case included both venous and arterial systems, right and left ventricles, and the splenoportal venous system. Venous air embolism in infants may occur in neurosurgical operations, cardiac surgery, epidural procedures, and umbilical vein catheterization (1–4). Documentation of air in the venous system following known or experimental introduction of air into arteries has implicated the cerebral circulation as a conduit for intravascular gas (5). There are fewer described causes of arterial gas embolism. In neonates receiving positive pressure ventilation, barotrauma can lead to systemic gas embolization. The pulmonary veins have been suggested as the point of entry of gas into the vasculature in such cases, allowing air to flow to the left heart and then to systemic arteries (6). Any systemic venous air may produce paradoxical arterial embolism by way of an intracardiac shunt or pulmonary arteriovenous malformation. Without a shunt pathway, venous air is usually dissipated or “filtered” in the pulmonary vasculature. However, if pressures are high, air can traverse the pulmonary vascular bed even without a demonstrable shunt (5,9,10). Precapillary arterial venous anastomoses have been described in many organs including the brain, liver, and spleen (5,9,10).

In this case, the peripheral venous infusion system was the avenue for air entry causing venous air embolism, and then paradoxical arterial air embolism. Clinical signs of significant venous air embolism include tachypnea and tachycardia. Right ventricular activity churns the mixture of air and blood into a bloody froth well known to forensic pathologists (5,11). Being compressible, the froth dampens the propulsive activity of ventricular contrac-
tion and can obstruct the right ventricular outflow tract. With obstruction of outflow, there is increased central venous pressure and decreased cardiac output with resultant hypotension and cyanosis. “Mill-wheel,” or a rhythmic splashing, murmur has been described (12). Also described is a patient “gasp” with entry of air into the pulmonary circulation in both humans and experimental animal models (13,15). In young infants with a persistent patent ductus arteriosus or, as in this case, a patent foramen ovale, right-to-left shunting is enhanced by increased central venous pressure. Venous air becomes the more sinister systemic arterial emboli. All organs may be affected including the brain, kidneys, intestinal tract, and coronary arteries.

Signs of cerebral arterial gas embolus include seizure, focal neurological deficits, depressed consciousness, and lethal cardiac arrhythmias (16). In the case reported here, the infant appeared to gasp or cough seconds after the intravenous infusion began. Sudden convulsive straightening of the back and arms, that immediately preceded the cardiovascular collapse was consistent with seizure activity.

Air embolism in neonates and young infants due to peripheral intravenous infusion is exceedingly rare. We find only seven documented cases in the English-language literature (17–21). Only one of those involved a previously healthy infant as in this case (18). In adults, at least 54 cases of air embolism from peripheral IVs are found in the literature (22–28). Most of these patients (52 of 54) were asymptomatic, suggesting that venous air embolism can be well tolerated in adults. An infant with small organs, fewer alveoli, and a blood volume of about 1 L (80–90 mL/kg) cannot tolerate even tiny amounts of intravascular air. Symptomatic venous air embolism has been reported in infants with only 0.4 mL/kg introduced into the circulation (1). Moreover, the possibility of right-to-left shunting is much higher in neonates and infants when relative right and left atrial pressure differences are the lowest (29).

Finally, it has recently been shown that a shunt is not even necessary for venous gaseous emboli to result in intracranial systemic emboli. Air bubbles may rise in retrograde fashion against thoraco-cervical venous flow, depending on bubble size, central vein diameter, and cardiac output (30). Recall that the infant in the case presented was resting in the arms of his sitting mother, presumably in a head-high position.

In our case, intravascular or intracardiac air was not identified on the chest radiograph obtained during the resuscitation effort. However, this does not exclude the possibility, indeed the probability, that air was present within the vascular system although not detectable. Several factors may contribute to this dilemma. All collections of air may not be detected or may be obscured by normal overlying tissues. The exposure factors will contribute to this problem. The altered characteristics of air when it becomes frothy also changes its visibility. Furthermore, collections of air or gas may be seen on CT studies that are not discernable on contemporary plain X-ray examination.

Movement or dispersion of vascular air also affects its visibility on radiographs. Dispersion of froth by chest compression moves the gas and creates smaller emboli. In one of Smith and Els’ cases (17) of intracardiac air, “frothy/foamy” blood was withdrawn from the posterior tibial artery, showing that the froth can be widely dispersed by external manipulation. In this case, both chest compressions and mechanical ventilation were used, possibly lessening the damaging effects of air in the heart and lungs, but also making it less visible.

In our case, gas was also identified in the splenoportal venous system. Gas in this location was, for many years, considered an ominous sign and thought only to be due to ischemic bowel. In recent years, newer imaging modalities have enabled earlier detection of smaller collections of portomesenteric gas and this may improve the outcome in some cases (31,32). The most common factors eventuating in portomesenteric gas are intestinal wall alteration, bowel distention, and sepsis.

Shiotani et al. (33) showed a direct relationship between gastrointestinal distention and portal venous gas in 175 of 190 patients examined with postmortem CTs following cardiac arrest and cardiopulmonary resuscitation attempts. Our patient was ventilated by hand, at unknown pressures, with an AMBU bag, a likely cause of bowel distention.

Air embolism can be caused by the barotrauma of mechanical ventilation. However, in infantile cases of barotrauma, pulmonary interstitial emphysema, and/or pneumothorax are identified along with the catastrophic event. Neither was present in this case.

The finding of concomitant portal venous gas and systemic venous gas is rare. We can find only six cases on reviewing the English-language literature (34–38). None of these occurred in
previously healthy infants. In one case of an infant with ischemic bowel, gas was actually seen on real-time ultrasonography to pass through the liver from portal to hepatic veins (37). A case of embolism death after laparoscopy delayed by air trapping in the portal circulation seems to show that air can pass from the portal system through the liver into the systemic venous circulation, i.e., the right heart (39). Edwards (40) writes that venous air embolism nearly always shows air in the liver on X-ray examination, presumably in hepatic veins. We know from experimental work years ago with carbon dioxide that there is easy egress of gas from the right atrium or inferior vena cava into the hepatic venous system (41). Can air go through the liver via hepatic veins to portal veins as well? Perhaps, but we have no indication of that in our case.

We surmise that ventilatory measures in our patient caused gastric distension, despite the orogastric tube, leading to portal venous gas. The stomach then decompressed post-mortem, revealing the portal gas, and thus explaining the lack of marked gastric distension on the post-mortem images.

The possibility that the gas observed on post-mortem images in the case reported here was a result of gas-forming organisms is refuted by no growth in blood cultures obtained before and after death. Putrefaction is dependent on temperature of the environment in which the body resides and on the antemortem state of health of the decedent; additionally, putrefaction develops more slowly in thin body types and in infants (42). After death, this formerly healthy infant’s body was kept in a refrigerated morgue until autopsy except for a few minutes of post-mortem CT in the air-conditioned Radiology Department. Further, if putrefaction or production of gas by organisms existed, the amount of cardiovascular gas should have been increased on the film obtained in the medic examiner’s office. Instead, the air was being resorbed and only small collections were still visible on this very bad radiograph.

Thus, this case is presented as one of tragic error: infant death by air embolism introduced through peripheral venous access with paradoxical systemic crossover. Venous air embolism may occur more often than is realized due to difficulty in diagnosis and the transient nature of clinical findings. It may not be identified at autopsy except for a few minutes of post-mortem CT in the air-conditioned Radiology Department. Further, if putrefaction or production of gas by organisms existed, the amount of cardiovascular gas should have been increased on the film obtained in the medic examiner’s office. Instead, the air was being resorbed and only small collections were still visible on this very bad radiograph.

“‘No medical tragedy is greater than the avoidable iatrogenic death. Perhaps saddest of all is the occurrence of venous air embolism, which is almost always the result of a therapeutic error or carelessness. . . .there is no instance in which a needle is placed in the venous system when the hazard of air embolism does not exist’” (44).

Additional information and reprint requests:
B. G. Brogdon, M.D.
Department of Radiology
University of South Alabama Medical Center
Mobile, AL 36617
E-mail: gbrogdon@usouthal.edu